Photopigment basis for dichromatic color vision in the horse.

نویسندگان

  • J Carroll
  • C J Murphy
  • M Neitz
  • J N Hoeve
  • J Neitz
چکیده

Horses, like other ungulates, are active in the day, at dusk, dawn, and night; and, they have eyes designed to have both high sensitivity for vision in dim light and good visual acuity under higher light levels (Walls, 1942). Typically, daytime activity is associated with the presence of multiple cone classes and color-vision capacity (Jacobs, 1993). Previous studies in other ungulates, such as pigs, goats, cows, sheep and deer, have shown that they have two spectrally different cone types, and hence, at least the photopigment basis for dichromatic color vision (Neitz & Jacobs, 1989; Jacobs, Deegan II, Neitz, Murphy, Miller, & Marchinton, 1994; Jacobs, Deegan II, & Neitz, 1998). Here, electroretinogram flicker photometry was used to measure the spectral sensitivities of the cones in the domestic horse (Equus caballus). Two distinct spectral mechanisms were identified and are consistent with the presence of a short-wavelength-sensitive (S) and a middle-to-long-wavelength-sensitive (M/L) cone. The spectral sensitivity of the S cone was estimated to have a peak of 428 nm, while the M/L cone had a peak of 539 nm. These two cone types would provide the basis for dichromatic color vision consistent with recent results from behavioral testing of horses (Macuda & Timney, 1999; Macuda & Timney, 2000; Timney & Macuda, 2001). The spectral peak of the M/L cone photopigment measured here, in vivo, is similar to that obtained when the gene was sequenced, cloned, and expressed in vitro (Yokoyama & Radlwimmer, 1999). Of the ungulates that have been studied to date, all have the photopigment basis for dichromatic color vision; however, they differ considerably from one another in the spectral tuning of their cone pigments. These differences may represent adaptations to the different visual requirements of different species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photopigment basis for dichromatic color vision in cows, goats, and sheep.

Electroretinogram (ERG) flicker photometry was used to measure the spectral properties of cones in three common ungulates-cattle (Bos taurus), goats (Capra hircus), and sheep (Ovis aries). Two cone mechanisms were identified in each species. The location of peak sensitivity of an S-cone mechanism varied from about 444 to 455 nm for the three species; analogous values for an M/L-cone were tightl...

متن کامل

Color vision in squirrel monkeys: sex-related differences suggest the mode of inheritance.

Behavioral tests of vision in squirrel monkeys (Saimiri sciureus) reveal that there are widespread individual variations in color vision in this species. The variation has a sex-related component: whereas both trichromatic and dichromatic color vision occurs among female monkeys, males appear exclusively dichromatic. This finding suggests that, unlike humans, squirrel monkeys have only a single...

متن کامل

Genetic basis of polymorphism in the color vision of platyrrhine monkeys.

It was earlier proposed that the polymorphism of color vision observed in some neotropical monkeys could be accounted for by assuming that these animals have only a single photopigment gene locus on the X-chromosome. Three kinds of evidence have been added to existing data sets in an effort to evaluate the adequacy of the single locus model: (1) photopigment complements of squirrel monkeys (Sai...

متن کامل

Primate photopigments and primate color vision.

The past 15 years have brought much progress in our understanding of several basic features of primate color vision. There has been particular success in cataloging the spectral properties of the cone photopigments found in retinas of a number of primate species and in elucidating the relationship between cone opsin genes and their photopigment products. Direct studies of color vision show that...

متن کامل

Diversity of Color Vision: Not All Australian Marsupials Are Trichromatic

Color vision in marsupials has recently emerged as a particularly interesting case among mammals. It appears that there are both dichromats and trichromats among closely related species. In contrast to primates, marsupials seem to have evolved a different type of trichromacy that is not linked to the X-chromosome. Based on microspectrophotometry and retinal whole-mount immunohistochemistry, fou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 1 2  شماره 

صفحات  -

تاریخ انتشار 2001